Finite Element Analysis of Flat Slab

Using numerical formulation of Bogner-Fox-Schmit (BFS) plate element

Input data

Span lengths

โƒ—a = hpโ€Š(โ€Š[3.6; 4.2; 4.2; 3.6]โ€Š)โ€Š = [3.6โ€‚4.2โ€‚4.2โ€‚3.6] m

โƒ—b = hpโ€Š(โ€Š[3; 3.6; 3]โ€Š)โ€Š = [3โ€‚3.6โ€‚3] m

Number of axes - nsa = lenโ€Š(โ€Šโƒ—aโ€Š)โ€Š + 1 = 5 , nsb = lenโ€Š(โ€Šโƒ—bโ€Š)โ€Š + 1 = 4

Axis coordinates - โƒ—xs = [0โ€‚3.6โ€‚7.8โ€‚12โ€‚15.6] m, โƒ—ys = [0โ€‚3โ€‚6.6โ€‚9.6] m

Slab dimensions - la = โƒ—xs.5 = 15.6 m, lb = โƒ—ys.4 = 9.6 m

Thickness - t = 0.2 m

Load - q = 10 kN/mยฒ

Modulus of elasticity - E = 35000 MPa

Poisson`s ratio - ฮฝ = 0.2

Finite element mesh

We will use Bogner-Fox-Schmit rectangular finite element with nDOFs = 16

Element dimensions - a1 = 0.6 m, b1 = 0.6 m

Number of elements and joints along a and b -

โƒ—na = ceiling(โƒ—aa1) = ceiling(โƒ—a0.6) = [6โ€‚7โ€‚7โ€‚6] , nea = sumโ€Š(โ€Šโƒ—naโ€Š)โ€Š = 26 , nja = nea + 1 = 26 + 1 = 27

โƒ—nb = ceiling(โƒ—bb1) = ceiling(โƒ—b0.6) = [5โ€‚6โ€‚5] , neb = sumโ€Š(โ€Šโƒ—nbโ€Š)โ€Š = 16 , njb = neb + 1 = 16 + 1 = 17

Total number of elements - ne = neaโ€Šยทโ€Šneb = 26โ€Šยทโ€Š16 = 416

Total number of joints - nj = njaโ€Šยทโ€Šnjb = 27โ€Šยทโ€Š17 = 459

Supported joints count - ns = nsaโ€Šยทโ€Šnsb = 5โ€Šยทโ€Š4 = 20

Joint coordinates

โƒ—xj = [0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0โ€‚0.6โ€‚0.6โ€‚0.6โ€‚...โ€‚15.6] m

โƒ—yj = [0โ€‚0.6โ€‚1.2โ€‚1.8โ€‚2.4โ€‚3โ€‚3.6โ€‚4.2โ€‚4.8โ€‚5.4โ€‚6โ€‚6.6โ€‚7.2โ€‚7.8โ€‚8.4โ€‚9โ€‚9.6โ€‚0โ€‚0.6โ€‚1.2โ€‚...โ€‚9.6] m

Numbers of joints at elements' corners

transpโ€Š(โ€Šejโ€Š)โ€Š = 1234567891011121314151618192021โ‹ฏ441 1819202122232425262728293031323335363738โ‹ฏ458 1920212223242526272829303132333436373839โ‹ฏ459 23456789101112131415161719202122โ‹ฏ442

Supported joints

โƒ—sj = [1โ€‚6โ€‚12โ€‚17โ€‚103โ€‚108โ€‚114โ€‚119โ€‚222โ€‚227โ€‚233โ€‚238โ€‚341โ€‚346โ€‚352โ€‚357โ€‚443โ€‚448โ€‚454โ€‚459]

Joints for element e - jeโ€Š(โ€Šeโ€Š)โ€Š = rowโ€Š(โ€Šej; eโ€Š)โ€Š

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416161217103108114119222227233238341346352357443448454459123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459

Finite element formulation

Shape functions

Along dimension a

Base functions

ฮฆ1aโ€Š(โ€Šฮพโ€Š)โ€Š = 1 โˆ’ ฮพ2โ€Šยทโ€Šโ€Š(โ€Š3 โˆ’ 2โ€Šยทโ€Šฮพโ€Š)โ€Š

ฮฆ2aโ€Š(โ€Šฮพโ€Š)โ€Š = ฮพโ€Šยทโ€Ša1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮพโ€Šยทโ€Šโ€Š(โ€Š2 โˆ’ ฮพโ€Š)โ€Šโ€Š)โ€Š

ฮฆ3aโ€Š(โ€Šฮพโ€Š)โ€Š = ฮพ2โ€Šยทโ€Šโ€Š(โ€Š3 โˆ’ 2โ€Šยทโ€Šฮพโ€Š)โ€Š

ฮฆ4aโ€Š(โ€Šฮพโ€Š)โ€Š = ฮพ2โ€Šยทโ€Ša1โ€Šยทโ€Šโ€Š(โ€Š-1 + ฮพโ€Š)โ€Š

First derivatives

ฮฆโ€ฒ1aโ€Š(โ€Šฮพโ€Š)โ€Š = -6โ€Šยทโ€Šฮพa1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮพโ€Š)โ€Š

ฮฆโ€ฒ2aโ€Š(โ€Šฮพโ€Š)โ€Š = 1 โˆ’ ฮพโ€Šยทโ€Šโ€Š(โ€Š4 โˆ’ 3โ€Šยทโ€Šฮพโ€Š)โ€Š

ฮฆโ€ฒ3aโ€Š(โ€Šฮพโ€Š)โ€Š = 6โ€Šยทโ€Šฮพa1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮพโ€Š)โ€Š

ฮฆโ€ฒ4aโ€Š(โ€Šฮพโ€Š)โ€Š = -ฮพโ€Šยทโ€Šโ€Š(โ€Š2 โˆ’ 3โ€Šยทโ€Šฮพโ€Š)โ€Š

Second derivatives

ฮฆโ€ณ1aโ€Š(โ€Šฮพโ€Š)โ€Š = -โ€‰6a12โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 2โ€Šยทโ€Šฮพโ€Š)โ€Š

ฮฆโ€ณ2aโ€Š(โ€Šฮพโ€Š)โ€Š = -โ€‰2a1โ€Šยทโ€Šโ€Š(โ€Š2 โˆ’ 3โ€Šยทโ€Šฮพโ€Š)โ€Š

ฮฆโ€ณ3aโ€Š(โ€Šฮพโ€Š)โ€Š = 6a12โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 2โ€Šยทโ€Šฮพโ€Š)โ€Š

ฮฆโ€ณ4aโ€Š(โ€Šฮพโ€Š)โ€Š = -โ€‰2a1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 3โ€Šยทโ€Šฮพโ€Š)โ€Š

Along dimension b

Base functions

ฮฆ1bโ€Š(โ€Šฮทโ€Š)โ€Š = 1 โˆ’ ฮท2โ€Šยทโ€Šโ€Š(โ€Š3 โˆ’ 2โ€Šยทโ€Šฮทโ€Š)โ€Š

ฮฆ2bโ€Š(โ€Šฮทโ€Š)โ€Š = ฮทโ€Šยทโ€Šb1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮทโ€Šยทโ€Šโ€Š(โ€Š2 โˆ’ ฮทโ€Š)โ€Šโ€Š)โ€Š

ฮฆ3bโ€Š(โ€Šฮทโ€Š)โ€Š = ฮท2โ€Šยทโ€Šโ€Š(โ€Š3 โˆ’ 2โ€Šยทโ€Šฮทโ€Š)โ€Š

ฮฆ4bโ€Š(โ€Šฮทโ€Š)โ€Š = ฮท2โ€Šยทโ€Šb1โ€Šยทโ€Šโ€Š(โ€Š-1 + ฮทโ€Š)โ€Š

First derivatives

ฮฆโ€ฒ1bโ€Š(โ€Šฮทโ€Š)โ€Š = -6โ€Šยทโ€Šฮทb1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮทโ€Š)โ€Š

ฮฆโ€ฒ2bโ€Š(โ€Šฮทโ€Š)โ€Š = 1 โˆ’ ฮทโ€Šยทโ€Šโ€Š(โ€Š4 โˆ’ 3โ€Šยทโ€Šฮทโ€Š)โ€Š

ฮฆโ€ฒ3bโ€Š(โ€Šฮทโ€Š)โ€Š = 6โ€Šยทโ€Šฮทb1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮทโ€Š)โ€Š

ฮฆโ€ฒ4bโ€Š(โ€Šฮทโ€Š)โ€Š = -ฮทโ€Šยทโ€Šโ€Š(โ€Š2 โˆ’ 3โ€Šยทโ€Šฮทโ€Š)โ€Š

Second derivatives

ฮฆโ€ณ1bโ€Š(โ€Šฮทโ€Š)โ€Š = -โ€‰6b12โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 2โ€Šยทโ€Šฮทโ€Š)โ€Š

ฮฆโ€ณ2bโ€Š(โ€Šฮทโ€Š)โ€Š = -โ€‰2b1โ€Šยทโ€Šโ€Š(โ€Š2 โˆ’ 3โ€Šยทโ€Šฮทโ€Š)โ€Š

ฮฆโ€ณ3bโ€Š(โ€Šฮทโ€Š)โ€Š = 6b12โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 2โ€Šยทโ€Šฮทโ€Š)โ€Š

ฮฆโ€ณ4bโ€Š(โ€Šฮทโ€Š)โ€Š = -โ€‰2b1โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 3โ€Šยทโ€Šฮทโ€Š)โ€Š

For vertical displacements w

N1,wโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N2,wโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N3,wโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N4,wโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

For rotations ฮธโ‚“

N1,ฮธโ‚“โ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N2,ฮธโ‚“โ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N3,ฮธโ‚“โ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N4,ฮธโ‚“โ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

For rotations ฮธแตง

N1,ฮธแตงโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N2,ฮธแตงโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N3,ฮธแตงโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N4,ฮธแตงโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

For twist ฯˆ

N1,ฯˆโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N2,ฯˆโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N3,ฯˆโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

N4,ฯˆโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š = ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š

plane-elemen.png

N1,w shape function plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 x y [0; 0] [1; 1] 0 0.0833 0.167 0.25 0.333 0.417 0.5 0.583 0.667 0.75 0.833 0.917 1

N1,ฮธโ‚“ shape function plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 x y [0; 0] [1; 1] 0 0.00741 0.0148 0.0222 0.0296 0.037 0.0444 0.0518 0.0593 0.0667 0.0741 0.0815 0.0889
0 0.25 0.5 0.75 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x y [0; 0] [1; 1] 0 0.02 0.04 0.06 0.08 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x y [0; 0] [1; 0.0889]

Shape functions vector

Nโ€Š(โ€Ši; ฮพ; ฮทโ€Š)โ€Š = takeโ€Š(โ€Ši; N1,wโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N1,ฮธโ‚“โ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N1,ฮธแตงโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N1,ฯˆโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N2,wโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N2,ฮธโ‚“โ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N2,ฮธแตงโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N2,ฯˆโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N3,wโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N3,ฮธโ‚“โ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N3,ฮธแตงโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N3,ฯˆโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N4,wโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N4,ฮธโ‚“โ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N4,ฮธแตงโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š; N4,ฯˆโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Šโ€Š)โ€Š

Constitutive matrix (stress - strain relationship)

D = Eโ€Šยทโ€Št312โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ ฮฝ2โ€Š)โ€Šโ€Šยทโ€Šhp([1; ฮฝ; 0 | ฮฝ; 1; 0 | 0; 0; 1 โˆ’ ฮฝ2]) = 35000โ€Šยทโ€Š0.2312โ€Šยทโ€Šโ€Š(โ€Š1 โˆ’ 0.22โ€Š)โ€Šโ€Šยทโ€Šhp([1; 0.2; 0 | 0.2; 1; 0 | 0; 0; 1 โˆ’ 0.22]) = 24.3055564.8611110 4.86111124.3055560 009.722222 kNm

Strain-displacement matrix

B1โ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š = takeโ€Š(โ€Šj; ฮฆโ€ณ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ณ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Šโ€Š)โ€Š

B2โ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š = takeโ€Š(โ€Šj; ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ณ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Šโ€Š)โ€Š

B3โ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š = 2โ€Šยทโ€Štakeโ€Š(โ€Šj; ฮฆโ€ฒ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ1bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ2bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ3aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ4aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ3bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ1aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Š; ฮฆโ€ฒ2aโ€Šโ€Š(โ€Šฮพโ€Š)โ€Šโ€Šยทโ€Šฮฆโ€ฒ4bโ€Šโ€Š(โ€Šฮทโ€Š)โ€Šโ€Š)โ€Š

Bโ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š = hpโ€Š(โ€Š[B1โ€Šโ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š; B2โ€Šโ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š; B3โ€Šโ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š]โ€Š)โ€Š

The coefficients of the stiffness matrix will be calculated by using the equation

Ke,ij = a1โ€Šยทโ€Šb1โ€Šยทโ€Š 1โˆซ 1โˆซBiโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€ŠTโ€Šยทโ€ŠDโ€Šยทโ€ŠBjโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€Š dฮพ dฮท

Element stiffness matrix

(above the main diagonal only)

BTDBeโ€Š(โ€Ši; j; ฮพ; ฮทโ€Š)โ€Š = transpโ€Š(โ€ŠBโ€Šโ€Š(โ€Ši; ฮพ; ฮทโ€Š)โ€Šโ€Š)โ€Šโ€Šยทโ€ŠDโ€Šยทโ€ŠBโ€Šโ€Š(โ€Šj; ฮพ; ฮทโ€Š)โ€Š

Keโ€Š(โ€Ši; jโ€Š)โ€Š = a1โ€Šยทโ€Šb1โ€Šยทโ€Š 1โˆซ 1โˆซBTDBeโ€Šโ€Š(โ€Ši; j; ฮพ; ฮทโ€Š)โ€Š dฮท dฮพ

$Repeat{$Repeat{Ke.i, j = Keโ€Šโ€Š(โ€Ši; jโ€Š)โ€Š for j = i...n} for i = 1...n} = 0.9777823

Ke = 796.296296135.185185135.18518516.736111-391.20370484.953704-13.6574074.097222-13.88888936.57407436.574074-8.541667-391.203704-13.65740784.9537044.097222 046.66666721.5972224.666667-84.95370414.027778-4.0948240.7083333-36.57407410.2777788.541667-1.624997-13.6574071.9444444.097222-0.5833333 0046.6666674.666667-13.6574074.0948241.944444-0.5833333-36.5740748.54166710.277778-1.625-84.953704-4.09722214.0277780.7083333 0000.9777823-4.0972220.70833330.5833333-0.1611111-8.5416671.6249971.625-0.2305541-4.0972220.58333330.7083333-0.1611111 0000796.296296-135.185185135.185185-16.736111-391.20370413.65740784.953704-4.097222-13.888889-36.57407436.5740748.541667 0000046.666667-21.5972224.66666713.6574071.944444-4.097222-0.583333336.57407410.277778-8.541667-1.624997 00000046.666667-4.666667-84.9537044.09722214.027778-0.7083333-36.574074-8.54166710.2777781.625 00000000.97778234.0972220.5833333-0.7083333-0.16111118.5416671.624997-1.625-0.2305541 00000000796.296296-135.185185-135.18518516.736111-391.203704-84.95370413.6574074.097222 00000000046.66666721.597222-4.66666784.95370414.027778-4.094824-0.7083333 000000000046.666667-4.66666713.6574074.0948241.9444440.5833333 000000000000.9777823-4.097222-0.7083333-0.5833333-0.1611111 000000000000796.296296135.185185-135.185185-16.736111 000000000000046.666667-21.597222-4.666667 0000000000000046.6666674.666667 0000000000000000.9777823

Element load vector

Fe,i = a1โ€Šยทโ€Šb1โ€Šยทโ€Š 1โˆซ 1โˆซNiโ€Šโ€Š(โ€Šฮพ; ฮทโ€Š)โ€ŠTโ€Šยทโ€Šq dฮพ dฮท

โƒ—Fe = [0.9โ€‚0.09โ€‚0.09โ€‚0.009โ€‚0.9โ€‚-0.09โ€‚0.09โ€‚-0.009โ€‚0.9โ€‚-0.09โ€‚-0.09โ€‚0.009โ€‚0.9โ€‚0.09โ€‚-0.09โ€‚-0.009] kN

Solution

Global stiffness matrix

K = 1020135.185185135.18518516.736111-391.203704-13.65740784.9537044.097222000000000000โ‹ฏ0 135.18518546.66666721.5972224.666667-13.6574071.9444444.097222-0.5833333000000000000โ‹ฏ0 135.18518521.59722246.6666674.666667-84.953704-4.09722214.0277780.7083333000000000000โ‹ฏ0 16.7361114.6666674.6666670.9777823-4.0972220.58333330.7083333-0.1611111000000000000โ‹ฏ0 -391.203704-13.657407-84.953704-4.0972221592.592593270.3703700-391.203704-13.65740784.9537044.09722200000000โ‹ฏ0 -13.6574071.944444-4.0972220.5833333270.3703793.33333300-13.6574071.9444444.097222-0.583333300000000โ‹ฏ0 84.9537044.09722214.0277780.70833330093.3333339.333333-84.953704-4.09722214.0277780.708333300000000โ‹ฏ0 4.097222-0.58333330.7083333-0.1611111009.3333331.955565-4.0972220.58333330.7083333-0.161111100000000โ‹ฏ0 0000-391.203704-13.657407-84.953704-4.0972221592.592593270.3703700-391.203704-13.65740784.9537044.0972220000โ‹ฏ0 0000-13.6574071.944444-4.0972220.5833333270.3703793.33333300-13.6574071.9444444.097222-0.58333330000โ‹ฏ0 000084.9537044.09722214.0277780.70833330093.3333339.333333-84.953704-4.09722214.0277780.70833330000โ‹ฏ0 00004.097222-0.58333330.7083333-0.1611111009.3333331.955565-4.0972220.58333330.7083333-0.16111110000โ‹ฏ0 00000000-391.203704-13.657407-84.953704-4.0972221592.592593270.3703700-391.203704-13.65740784.9537044.097222โ‹ฏ0 00000000-13.6574071.944444-4.0972220.5833333270.3703793.33333300-13.6574071.9444444.097222-0.5833333โ‹ฏ0 0000000084.9537044.09722214.0277780.70833330093.3333339.333333-84.953704-4.09722214.0277780.7083333โ‹ฏ0 000000004.097222-0.58333330.7083333-0.1611111009.3333331.955565-4.0972220.58333330.7083333-0.1611111โ‹ฏ0 000000000000-391.203704-13.657407-84.953704-4.0972221592.592593270.3703700โ‹ฏ0 000000000000-13.6574071.944444-4.0972220.5833333270.3703793.33333300โ‹ฏ0 00000000000084.9537044.09722214.0277780.70833330093.3333339.333333โ‹ฏ0 0000000000004.097222-0.58333330.7083333-0.1611111009.3333331.955565โ‹ฏ0 โ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฑโ‹ฎ00000000000000000000โ‹ฏ0.9777823

Global load vector

โƒ—F = [0.9โ€‚0.09โ€‚0.09โ€‚0.009โ€‚1.8โ€‚0.18โ€‚0โ€‚0โ€‚1.8โ€‚0.18โ€‚0โ€‚0โ€‚1.8โ€‚0.18โ€‚0โ€‚0โ€‚1.8โ€‚0.18โ€‚0โ€‚0โ€‚...โ€‚0.009] kN

Solution of the system of equations

โƒ—Z = slsolveโ€Š(โ€ŠK; โƒ—Fโ€Š)โ€Š = [0โ€‚0.5523613โ€‚0.3827392โ€‚-0.4161287โ€‚0.2028064โ€‚0.3732832โ€‚0.2648463โ€‚-0.1937261โ€‚0.2989047โ€‚0.3091182โ€‚0.04830843โ€‚-0.02501454โ€‚0.261207โ€‚0.3426386โ€‚-0.1651493โ€‚0.1275073โ€‚0.1211489โ€‚0.4681287โ€‚-0.2671179โ€‚0.2293302โ€‚...โ€‚-0.4161286] mm

Results

Joint displacements

transpโ€Š(โ€ŠWzโ€Š)โ€Š = 00.3030.4880.5120.3830.16500.1390.340.4690.4720.3470.14600.1460.3470.4720.4690.340.139โ‹ฏ0 0.2030.4190.5620.5810.4850.3370.250.310.4380.5310.5330.4430.3110.2420.3110.4430.5330.5310.4380.31โ‹ฏ0.203 0.2990.4820.6050.620.5370.4170.350.3870.4850.5620.5640.4890.3870.3380.3870.4890.5640.5620.4850.387โ‹ฏ0.299 0.2610.4610.5930.6080.5130.3750.2990.3420.4550.5420.5440.460.3450.2890.3450.460.5440.5420.4550.342โ‹ฏ0.261 0.1210.3860.550.5650.4430.2530.1380.2170.3810.4930.4970.3890.2250.1340.2250.3890.4970.4930.3810.217โ‹ฏ0.121 00.340.5270.5420.4040.17300.1350.3360.4630.4670.3450.14500.1450.3450.4670.4630.3360.135โ‹ฏ0 0.1390.3980.5560.5660.440.2470.1290.2060.3670.4780.4810.3740.2110.1210.2110.3740.4810.4780.3670.206โ‹ฏ0.139 0.2990.4870.6080.6120.5110.3690.2870.3250.4330.5160.5190.4370.3240.270.3240.4370.5190.5160.4330.325โ‹ฏ0.299 0.3630.5260.6320.6350.5440.420.350.3760.4640.5360.5380.4670.3730.3290.3730.4670.5380.5360.4640.376โ‹ฏ0.363 0.2990.4870.6080.6120.5110.3690.2870.3250.4330.5160.5190.4370.3240.270.3240.4370.5190.5160.4330.325โ‹ฏ0.299 0.1390.3980.5560.5660.440.2470.1290.2060.3670.4780.4810.3740.2110.1210.2110.3740.4810.4780.3670.206โ‹ฏ0.139 00.340.5270.5420.4040.17300.1350.3360.4630.4670.3450.14500.1450.3450.4670.4630.3360.135โ‹ฏ0 0.1210.3860.550.5650.4430.2530.1380.2170.3810.4930.4970.3890.2250.1340.2250.3890.4970.4930.3810.217โ‹ฏ0.121 0.2610.4610.5930.6080.5130.3750.2990.3420.4550.5420.5440.460.3450.2890.3450.460.5440.5420.4550.342โ‹ฏ0.261 0.2990.4820.6050.620.5370.4170.350.3870.4850.5620.5640.4890.3870.3380.3870.4890.5640.5620.4850.387โ‹ฏ0.299 0.2030.4190.5620.5810.4850.3370.250.310.4380.5310.5330.4430.3110.2420.3110.4430.5330.5310.4380.31โ‹ฏ0.203 00.3030.4880.5120.3830.16500.1390.340.4690.4720.3470.14600.1460.3470.4720.4690.340.139โ‹ฏ0 mm

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x y [0; 0] [15.6; 9.6] -0.643 -0.59 -0.536 -0.482 -0.429 -0.375 -0.322 -0.268 -0.214 -0.161 -0.107 -0.0536 3.73E-5

Bending moments

Zjโ€Š(โ€Šjโ€Š)โ€Š = sliceโ€Š(โ€Šโƒ—Z; k1โ€Šยทโ€Šโ€Š(โ€Šj โˆ’ 1โ€Š)โ€Š + 1; k1โ€Šยทโ€Šjโ€Š)โ€Š

Zeโ€Š(โ€Šeโ€Š)โ€Š = hpโ€Š(โ€Š[Zjโ€Šโ€Š(โ€Šej.e, 1โ€Š)โ€Š; Zjโ€Šโ€Š(โ€Šej.e, 2โ€Š)โ€Š; Zjโ€Šโ€Š(โ€Šej.e, 3โ€Š)โ€Š; Zjโ€Šโ€Š(โ€Šej.e, 4โ€Š)โ€Š]โ€Š)โ€Š

Average bending moments at joints, kNm/m

Mj = 1.4984650.30973720.21973220.15634330.15705190.99833020.15641930.15197410.194220.15197420.15641970.99833030.15704750.15633970.21974860.30988081.498588.5029986.4791995.777684โ‹ฏ1.498434 1.5669147.8051019.337787.6680973.333-28.3617353.146397.3238888.8950197.3238883.14639-28.3617343.3329977.6680939.3377917.805181.5668130.32059725.3822017.126518โ‹ฏ1.56695 8.0913913.7668960.4863938-2.479308-4.4591990.15508644.7803592.8427231.18852ร—10-8-2.842723-4.780359-0.15508664.4591992.479312-0.4863957-3.766967-8.091394.1108572.5729420.367139โ‹ฏ8.09139

Bending moments for the plate

Bending moments - Mx

transpโ€Š(โ€ŠMxโ€Š)โ€Š = 1.4984658.50299811.0665210.477416.7974770.8838727-31.2352710.30150175.6444428.7799958.8776125.9200110.6854447-30.1330410.68544515.920018.8776138.7799955.6444430.3015014โ‹ฏ1.498543 0.30973726.4791999.43228.8772754.922637-2.695317-10.242892-3.2602943.8087977.2504257.3613934.127752-2.764349-9.733242-2.7643494.1277527.3613937.2504263.808797-3.260293โ‹ฏ0.3098324 0.21973225.7776848.7162938.1350554.039483-2.257879-6.060711-2.8192912.9321446.5167586.6405433.291674-2.294253-5.615624-2.2942533.2916746.6405436.5167582.932144-2.819291โ‹ฏ0.2197447 0.15634335.9931769.1259938.4927894.05777-3.257751-7.98846-3.8326772.9136746.7974696.9268223.304597-3.205198-7.381383-3.2051983.3045976.9268226.7974692.913674-3.832677โ‹ฏ0.1563395 0.15705197.26964410.3722499.5566044.972553-5.268409-16.118864-5.8654913.7668327.7132287.8382434.157472-5.096284-15.086013-5.0962844.1574727.8382437.7132283.766832-5.865491โ‹ฏ0.1570491 0.99833029.03852511.08041810.1227775.76385-2.135317-38.650059-2.7455574.521798.1908048.3150414.904088-2.088413-36.536458-2.0884134.9040888.3150418.1908044.52179-2.745557โ‹ฏ0.9983301 0.15641937.22104710.2820019.4364654.848242-5.358009-16.18287-5.963023.6242627.5601117.6988554.05327-5.138805-15.091525-5.1388054.053277.6988557.5601113.624262-5.96302โ‹ฏ0.1564295 0.15197415.8731868.927958.2297553.773453-3.419119-8.032747-4.0090422.5942596.4697616.6264533.062913-3.269947-7.306587-3.2699473.0629136.6264536.4697612.594259-4.009042โ‹ฏ0.151956 0.194225.5141478.3802137.6929313.468337-2.491105-5.742638-3.0733842.3104685.9792226.142652.786902-2.376825-5.118402-2.3768252.7869026.142655.9792222.310468-3.073384โ‹ฏ0.1942406 0.15197425.8731868.927958.2297553.773453-3.419119-8.032747-4.0090422.5942596.4697616.6264533.062913-3.269947-7.306587-3.2699473.0629136.6264536.4697612.594259-4.009042โ‹ฏ0.1519563 0.15641977.22104710.2820019.4364654.848242-5.358009-16.18287-5.963023.6242627.5601117.6988554.05327-5.138805-15.091525-5.1388054.053277.6988557.5601113.624262-5.96302โ‹ฏ0.1564287 0.99833039.03852411.08041810.1227775.76385-2.135317-38.650059-2.7455574.521798.1908048.3150414.904088-2.088413-36.536458-2.0884134.9040888.3150418.1908044.52179-2.745557โ‹ฏ0.99833 0.15704757.26964610.3722499.5566044.972554-5.268409-16.118864-5.8654913.7668327.7132287.8382434.157472-5.096284-15.086013-5.0962844.1574727.8382437.7132283.766832-5.865491โ‹ฏ0.1570551 0.15633975.9931779.1259948.4927894.05777-3.257751-7.98846-3.8326772.9136746.7974696.9268223.304597-3.205198-7.381383-3.2051983.3045976.9268226.7974692.913674-3.832677โ‹ฏ0.1563387 0.21974865.7776858.7162928.1350524.039485-2.25788-6.060711-2.8192912.9321446.5167586.6405433.291674-2.294252-5.615624-2.2942533.2916746.6405436.5167582.932144-2.819291โ‹ฏ0.2197395 0.30988086.4791779.4321788.8772824.922634-2.695314-10.242892-3.2602933.8087977.2504267.3613934.127752-2.764349-9.733242-2.7643494.1277527.3613937.2504263.808797-3.260293โ‹ฏ0.309677 1.498588.50289311.06653710.4774016.7974870.8838683-31.235270.3015015.6444438.7799948.8776145.9200090.6854455-30.1330410.68544495.9200118.8776138.7799955.6444420.3015017โ‹ฏ1.498434 kNm/m

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x y [0; 0] [15.6; 9.6] -38.63 -34.49 -30.34 -26.19 -22.04 -17.89 -13.74 -9.6 -5.45 -1.3 2.85 7 11.15

Bending moments My

transpโ€Š(โ€ŠMyโ€Š)โ€Š = 1.5669140.32059720.23335870.21478520.16828160.17980351.0157890.17943010.16698940.20981910.20919060.16634670.17761190.98914820.17761230.16634590.20919150.20981810.16699030.1794296โ‹ฏ1.566846 7.8051015.3822014.3084124.1349524.7423316.3403958.2307146.283164.6119813.892283.8674994.5305346.122587.9858966.122584.5305343.8674993.892284.6119816.28316โ‹ฏ7.805153 9.337787.1265185.8000745.5530326.4148988.115779.0466668.0147046.1888365.144855.1167776.0905897.8212248.7772257.8212256.0905895.1167775.144856.1888368.014704โ‹ฏ9.337789 7.6680975.417564.2624933.9204134.2336925.4198226.3445915.3011043.9794783.4779983.4809043.9685825.2228376.1814595.2228373.9685823.4809043.4779983.9794785.301104โ‹ฏ7.668093 3.333-0.32807790.53963460.405616-1.17438-3.412974-0.3301829-3.531204-1.3995740.099649960.1609008-1.210571-3.234664-0.2184219-3.234664-1.2105710.16090080.09964995-1.399574-3.531204โ‹ฏ3.332998 -28.361735-7.038366-1.936162-1.646652-4.993974-13.644678-36.317523-13.771126-5.215881-1.858171-1.764027-4.886867-13.033174-34.571125-13.033174-4.886867-1.764027-1.858171-5.215881-13.771126โ‹ฏ-28.361736 3.14639-0.50666960.34851460.1799353-1.456247-3.762435-0.7233495-3.922981-1.765819-0.2520091-0.1968807-1.596341-3.661657-0.6661947-3.661657-1.596341-0.1968807-0.2520091-1.765819-3.922981โ‹ฏ3.146398 7.3238885.0945483.9089783.4891393.6754684.6858655.498734.4839693.2541992.7943762.7885493.2144954.3499645.2436514.3499643.2144952.7885492.7943763.2541994.483969โ‹ฏ7.323874 8.8950196.7401225.3508634.961265.6089376.9130637.5725296.6931585.1417844.1805254.1496375.0277916.4568627.2129736.4568625.0277914.1496374.1805255.1417846.693158โ‹ฏ8.895035 7.3238885.0945483.9089783.4891393.6754684.6858655.498734.4839693.2541992.7943762.7885493.2144954.3499645.2436514.3499643.2144952.7885492.7943763.2541994.483969โ‹ฏ7.323874 3.14639-0.50666950.34851450.1799354-1.456247-3.762435-0.7233495-3.922981-1.765819-0.2520091-0.1968807-1.596341-3.661657-0.6661947-3.661657-1.596341-0.1968807-0.2520091-1.765819-3.922981โ‹ฏ3.146397 -28.361734-7.038366-1.936162-1.646652-4.993974-13.644678-36.317523-13.771126-5.215881-1.858171-1.764027-4.886867-13.033174-34.571125-13.033174-4.886867-1.764027-1.858171-5.215881-13.771126โ‹ฏ-28.361736 3.332997-0.32807810.53963450.405616-1.174379-3.412974-0.3301829-3.531204-1.3995740.099649940.1609008-1.210571-3.234664-0.2184219-3.234664-1.2105710.16090080.09964996-1.399574-3.531204โ‹ฏ3.333003 7.6680935.417564.2624933.9204144.2336915.4198226.3445915.3011043.9794783.4779983.4809043.9685825.2228376.1814595.2228373.9685823.4809043.4779983.9794785.301104โ‹ฏ7.668093 9.3377917.1265295.8000795.5530296.4148998.1157699.0466678.0147046.1888365.144855.1167776.0905897.8212258.7772257.8212256.0905895.1167775.144856.1888368.014704โ‹ฏ9.337788 7.805185.3822474.3083974.1349584.7423266.3403988.2307136.2831614.611983.8922813.8674984.5305346.122587.9858966.122584.5305343.8674993.892284.6119816.28316โ‹ฏ7.805067 1.5668130.32041280.23337480.21477460.16829440.17979831.0157890.17942920.16699140.20981690.20919270.1663450.17761280.98914820.1776120.16634630.2091910.20981870.16698980.1794301โ‹ฏ1.56695 kNm/m

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x y [0; 0] [15.6; 9.6] -36.29 -32.49 -28.69 -24.89 -21.08 -17.28 -13.48 -9.68 -5.87 -2.07 1.73 5.54 9.34

Bending moments Mxy

transpโ€Š(โ€ŠMxyโ€Š)โ€Š = 8.0913914.1108571.417137-0.9458016-3.233923-4.7834720.021753974.8406963.3363691.142106-1.025808-3.195694-4.6752918.203632ร—10-94.6752913.1956941.025808-1.142106-3.336369-4.840696โ‹ฏ-8.09139 3.7668962.5729420.9831798-0.5157529-2.056961-3.2290760.058233953.3549532.2134050.7311327-0.6697977-2.124616-3.226088-1.924384ร—10-83.2260882.1246150.6697977-0.7311327-2.213405-3.354953โ‹ฏ-3.766944 0.48639380.3671390.21047150.08573235-0.1195606-0.31383010.073481280.46129660.26670830.05683469-0.07988453-0.2739108-0.43182734.135681ร—10-90.43182730.27391090.07988453-0.05683469-0.2667083-0.4612966โ‹ฏ-0.4863951 -2.479308-1.795977-0.60125750.61674581.7468932.0926540.07628287-1.948193-1.634066-0.58147370.49193451.5362541.879329-9.399297ร—10-10-1.879329-1.536254-0.49193450.58147371.6340661.948193โ‹ฏ2.479311 -4.459199-3.239942-0.89774270.68266692.3709224.5249970.07578146-4.382303-2.264662-0.68176990.60076632.1521054.2108782.347034ร—10-10-4.210878-2.152105-0.60076630.68176992.2646624.382303โ‹ฏ4.459199 0.15508640.16117180.14924740.12459870.096391450.077977030.073881980.069886510.051250560.02105121-0.008413693-0.02659669-0.02344966-6.046931ร—10-110.023449660.026596690.008413693-0.02105121-0.05125056-0.06988651โ‹ฏ-0.1550867 4.7803593.5659681.189369-0.4505428-2.206755-4.3992850.063484924.5354542.379370.7252095-0.6263983-2.225358-4.2792771.578955ร—10-114.2792772.2253580.6263983-0.7252095-2.37937-4.535454โ‹ฏ-4.780358 2.8427232.134380.8682924-0.4377229-1.679594-2.0840690.037787042.168351.7961290.6296557-0.5417072-1.677932-2.037682-4.744667ร—10-122.0376821.6779320.5417072-0.6296557-1.796129-2.16835โ‹ฏ-2.842723 1.18852ร—10-8-6.576042ร—10-9-7.016847ร—10-101.244056ร—10-102.191792ร—10-10-7.501514ร—10-111.8954ร—10-11-1.177769ร—10-133.047327ร—10-121.092988ร—10-12-4.777445ร—10-125.435255ร—10-12-3.554444ร—10-123.228026ร—10-12-2.990397ร—10-121.375859ร—10-12-1.298123ร—10-127.488428ร—10-132.937394ร—10-12-1.450797ร—10-11โ‹ฏ-3.835288ร—10-9 -2.842723-2.13438-0.86829240.43772291.6795942.084069-0.03778704-2.16835-1.796129-0.62965570.54170721.6779322.037682-7.622464ร—10-12-2.037682-1.677932-0.54170720.62965571.7961292.16835โ‹ฏ2.842723 -4.780359-3.565968-1.1893690.45054282.2067554.399285-0.06348492-4.535454-2.37937-0.72520950.62639832.2253584.2792772.756043ร—10-11-4.279277-2.225358-0.62639830.72520952.379374.535454โ‹ฏ4.780358 -0.1550866-0.1611716-0.1492474-0.1245987-0.09639145-0.07797703-0.07388197-0.06988651-0.05125056-0.021051210.0084136930.026596690.02344966-1.059221ร—10-10-0.02344966-0.02659669-0.0084136930.021051210.051250560.06988651โ‹ฏ0.1550864 4.4591993.2399410.8977427-0.6826669-2.370922-4.524997-0.075781474.3823032.2646620.6817699-0.6007663-2.152105-4.2108784.094768ร—10-104.2108782.1521050.6007663-0.6817699-2.264662-4.382303โ‹ฏ-4.459198 2.4793121.7959760.6012571-0.6167458-1.746893-2.092654-0.076282861.9481931.6340660.5814737-0.4919345-1.536254-1.879329-1.611647ร—10-91.8793291.5362540.4919345-0.5814737-1.634066-1.948193โ‹ฏ-2.479307 -0.4863957-0.3671418-0.2104716-0.085731850.11956050.3138302-0.07348132-0.4612966-0.2667083-0.056834690.079884520.27391090.43182736.850159ร—10-9-0.4318273-0.2739109-0.079884530.056834690.26670830.4612966โ‹ฏ0.4863938 -3.766967-2.57294-0.98317550.51575362.0569623.229076-0.05823381-3.354953-2.213405-0.73113270.66979772.1246153.226088-3.125512ร—10-8-3.226088-2.124615-0.66979770.73113272.2134053.354953โ‹ฏ3.766876 -8.09139-4.110792-1.4171370.94579833.2339224.783472-0.02175395-4.840696-3.336369-1.1421061.0258083.1956944.6752911.254052ร—10-8-4.675291-3.195694-1.0258081.1421063.3363694.840696โ‹ฏ8.09139 kNm/m

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x y [0; 0] [15.6; 9.6] -8.09 -6.74 -5.39 -4.05 -2.7 -1.35 2.37E-7 1.35 2.7 4.05 5.39 6.74 8.09

 

@hydrostructai.com